
X. Zhou et al. (Eds.): WISE 2004, LNCS 3306, pp. 218–228, 2004.
© Springer-Verlag Berlin Heidelberg 2004

An Efficient OLAP Query Processing Technique Using
Measure Attribute Indexes*

T.S. Jung1, M.S. Ahn2, and W.S. Cho2

1 Department of Information Industrial Engineering, Chungbuk National University, 361763
Choungju, Chungbuk, Korea

2 Department of Management Information Systems, Chungbuk National University, 361763
Choungju, Chungbuk, Korea

{mispro, epita55, wscho}@chungbuk.ac.kr

Abstract. We propose an index structure, called measure attribute (MA) index,
and a query processing technique to improve OLAP query performance. OLAP
queries are extremely complicated due to representing the intricate business
logic of the company on a huge quantity of data. This is why the efficient query
evaluation becomes a critical issue in OLAP systems. Proposed query
processing technique supports an efficient evaluation of the star joins and
grouping operators known as the most frequently used but very expensive
operators in OLAP queries. The MA index is a variation of the path index in
object databases and supports index-only processing for the star joins and
grouping operators. Index-only processing is a well known efficient technique
in the query evaluation area. We implemented the MA index on top of an
object-relational DBMS. Performance analysis shows that the MA index
provides speedups of orders of magnitude for typical OLAP queries.

1   Introduction

Data warehouse is a collection of integrated, subject-oriented, nonvolatile, time-
variant information for decision making in an organization[10,15]. The data
warehouse is becoming an essential infrastructure in most organizations such as
business companies, hospitals, and government organizations.

OLAP (On-Line Analytical Processing) is the process that end users directly
analyze the data warehouse in an interactive mode for various decision making
applications[3]. Conventional OLAP systems can be implemented either MOLAP
(multidimensional OLAP) or ROLAP (relational OLAP)[3]. In this paper, we assume
another type of OLAP implementation, called OOLAP (object-relational database
OLAP). Recently, the necessity of OOLAP is increasing by the emergence of
ORDBMSs as the next generation DBMSs[1,4,6,7,14].   

                                                          
* This research was supported by the Program for the Training of Graduate Students in

Regional Innovation which was conducted by the Ministry of Commerce, Industry and
Energy of the Korean Government.



An Efficient OLAP Query Processing Technique Using Measure Attribute Indexes        219

OLAP queries are extremely complicated due to representing the intricate business
logic of the company. They also require long response time because of the complex
queries on a huge quantity of data. This is why the efficient query evaluation is an
important issue in OLAP systems.

In this paper, we propose an index structure, called MA (measure attribute) index,
and a query processing technique to improve the performance of OLAP queries. The
MA index is a variation of the path index in object databases and supports index-only
processing for the star joins and grouping operators. Note that they are the most
frequently used operators in OLAP queries[5]. An MA index directly associates the
values of the measure attribute with OIDs (or RIDs) of the dimension class (or table)
for index-only processing of the star joins and groupings. Index-only processing is a
well-known query processing technique in the database performance area. We also
propose algorithms for index-only processing of the star joins and groupings.

Proposed query processing technique with the MA indexes supports an efficient
evaluation of the star join and grouping operators. We have implemented the MA
index on top of an object-relational DBMS, and the query performance analysis
shows speedups of orders of magnitude for typical OLAP queries. Although the idea
has been implemented in the OOLAP environment, it can be applied to the ROLAP
environments with no modification.

The paper is organized as follows. In Section 2, we discuss OOLAP systems and
the existing index structures. In Section 3, we propose the MA index and a query
processing technique utilizing the index. In Section 4, we describe mathematical
analysis and performance evaluation results. In Section 5, we present conclusions and
future work.

2   Related Work

We discuss about the star schema and OLAP queries in OOLAP environments. We
then present existing indexes to speedup OLAP query evaluation.

2.1   Star Schema and OLAP Query

There are some differences between ROLAP and OOLAP environments. First,
OOLAP uses Object DBMSs instead of Relational DBMSs. Second, relationships
between primary key and foreign key in ROLAP are replaced by attribute-domain
relationships in OOLAP. Each class in the OOLAP may have subclasses, and the
domain of an attribute may be another class. Figure 1 shows a star schema in OOLAP.
Various analyses can be done on Figure 1 by using OLAP queries. Query 1 is a
typical OLAP query on the star schema.

In query Q1, star joins of Sales, Store, Time, and Product are represented by the
path expressions in the object SQL. Note that the cost of the star joins is very
expensive because the fact class Sales contains a huge number of objects in most
cases.



220        T.S. Jung, M.S. Ahn, and W.S. Cho

Fig. 1. A Star schema for sales information

2.2   Conventional Index Structures for OLAP Query Processing

For efficient OLAP query processing, various indexes such as Bitmap (BM for short)
index and Bitmap Join (BJ for short) index have been proposed in OLAP
systems[2,8,9,12,13,18,19]. Generally, BM index is superior to the B+-Tree index in
space and retrieval efficiency. BJ[12] index is an integration of the Join Index[17] and
BM index for efficient star joins.

However, space overhead of the indexes BM index and BJ index becomes serious
as the number of distinct values in the attribute increases[18]. Encoded Bitmap (EB
for short) index is a solution for the space overhead[19]. In Figure 1, let assume
1,000,000 tuples in the fact table Sales, 12,000 tuples in the dimension table Store.
The BJ index between Sales and Store requires 12,000 bit vectors, each of which has
1,000,000 bits (12Gbits). However, the EB index requires just�log212000�= 14 bit
vectors, each of which has 1,000,000 bits (14Mbits) [19].

Although these indexes provide a reasonable space overhead and reduced access
time compared with conventional indexes, their query evaluation cost is still
expensive especially when a large number of objects have to be accessed from the
fact table. Note that the index provides not the objects themselves but the locations of
the qualified objects. So the query processor should access the qualified objects from
the fact table via the locations obtained from the indexes. Our experiments show that
the latter activity (i.e., accessing qualified objects via the locations) requires a
significant time overhead when a great number of objects should be accessed from the
fact table. We confirm this situation in Sections 4.2 and 4.3.

3   The MA Index and Query Processing Technique

We present the MA index which intends to minimize the access cost even though the
query processor accesses a great number of objects from the fact table. We then
propose an efficient query processing algorithm that fully utilizes the MA indexes.



An Efficient OLAP Query Processing Technique Using Measure Attribute Indexes        221

3.1   Index Structure

Storage structure for the MA index can be considered as a simple relational algebra
operators. Let F and Di, i=1, 2, 3, ..., n denote the fact table and dimension tables
respectively. Figure 2(a) shows a star schema of F and Di’s. The MA index MA(F.di)
on the path expression F.di can be constructed by the join of F and Di followed by a
projection as follows:

MA(F.di) = ∏ Di.oid, MA (Di JOIN F)
For the star schema in Figure 2(a), we create four MA indexes for the joins (Di

JOIN F), i=1, 2, 3, 4. Each index MA(F.di) is conceptually a binary relation whose
attributes are oid of Di and the measure attribute (MA) of F. Figure 2(b) shows the
structure of MA(F.di), i=1, 2, 3, 4. In the implementation, all the MA indexes share
the MA values stored in the file MAF rather than duplicating them in each index.

Fig. 2. MA Index Structure

(Example 1)
Figure 3 is showing the example of storage and index structures for the classes Sales,
Store, and Time for the star schema in Figure 1. Figure 3 (b) shows the states of Sales,
Store, and Time classes and Figure 3 (a) shows two measure index on the attributes
Sales.Store and Sales.Time : MA(Sales.Store) and MA(Sales.Time). Note that objects
in the fact class are not stored in the original form; only measure attribute(s) is
physically stored in the file MAF(measure attribute file). And the relationships
between fact and dimension classes are stored in the index MA. For example,
MA(Sales.Store) includes two fields; one for the search key, and the other for the
offsets of the values in MAF. The key of the index MA(Sales.Store) is the OID of
Store, and the pointer field has the offsets of the values in the MAF file. For example,
Amount values related to the Store OID 3312 are 5, 10, 45, … because their offset in
MAF are 1,3,5,… respectively. In MA(Sales.Store), we can see the index entry
[3312|1,3,5,…] denoting this information. MA(Sales.Time) can be constructed in the
same way. We can access Amount values sold by a specific Store object from the



222        T.S. Jung, M.S. Ahn, and W.S. Cho

index MA(Sales.Store), and this leads a significant advantage in the processing of star
joins and grouping operators.

Fig. 3. Database State and Index Structure

Note that the user interface is Figure 3(b), not Figure 3(a). That is to say, users see
the star schema in the form of Figure 1, and issue OLAP query as the form of Query
Q1 in Section 2.1. The OLAP engine described in Section 3.2 decomposes the OLAP
query for the star schema in Figure 3(b) into a number of small queries in accordance
with the storage structure in Figure 3(a).

Although conventional EB and join indexes also support star joins of F and Di, they
still need significant access costs for the measure attributes. However, the MA
indexes overcome this overhead by containing the measure values directly in the
index. For example, we can aggregate measure attribute values (5, 10, 45, …) in MAF
after joining store (OID = 3312) and sales objects by using the index
MA(Sales.Store). I.e., index-only processing for the joins and aggregations is possible.

3.2   Query Processing Algorithm

Here, we describe a query processing algorithm for utilizing the MA indexes. We
assume the star schema in Figure 2. For the following Query Q in Figure 4, the
algorithm QueryDecompAndProc() shows the query transformation process.



An Efficient OLAP Query Processing Technique Using Measure Attribute Indexes        223

Fig. 4. Query Q and Query Processing Algorithm

(Example 2)
Figure 5 shows the query processing in detail. For the query Q1 in Figure 1, the
OLAP system converts Q1 into Q1-1 and Q1-2 in order to utilize the measure indexes.
Q1-1 and Q1-2 can be processed by using MA(Sales.Store) and MA(Sales.Time)
respectively. MA(Sales.Store), as shown in Figure 3 (a), provides the offsets which
point to the amounts sold by the state “CA”. Similarly, MA(Sales.Time) generates the
offsets for the amounts sold in 2003. Two sets of the offsets (described by
L1={1,3,5,7,9,21,33} and L2={1,3,5,21,34,45}) are merged into the set L={1,3,5,21}
to process the logical AND operator in the WHERE clause. Each offset in L denotes
the location where the qualified measure value is stored in MAF. If there are grouping
attributes, the list L is decomposed into the group lists GLs by using the MA indexes:
GL1 and GL2. Finally, measure values corresponding to GLi are accessed and
aggregated into the find results.

4   Performance Analysis

In this section, we analyze the space and time complexity for the measure attribute
indexes. We first describe mathematical analysis and then query response time for a
large data warehouse. Symbols in Table 1 show the parameters used in the
mathematical analysis.

4.1   Space Comparison

In Figure 2, we assume the following statistics for space analysis. Here the length of
OID is 8 bytes.

 n(Di) = 10,000, n(F) = 100,000 ~ 100,000,000



224        T.S. Jung, M.S. Ahn, and W.S. Cho

Fig. 5.  Query Processing by Transformation

Table 1. The parameters used in the analysis.

Symbols Meaning

n(C) Number of objects in the class C

p(C) Number of blocks in the class C
s(pred) Selectivity for the condition pred

s(C) Selectivity of the class C  

B(b, bf, k)
The expected number of block I/Os when k records
are accessed in the address order from the file composed
of b blocks with bf blocking factor [20]

c(I)   Index access cost for the index I
bf(C)   Blocking factor for the class C

G(I, attr)   Grouping cost using the index I

From these statistics, we compute the space requirements for B+-Tree, Encoded
Bit-map(EB) index, and Measure Attribute (MA) indexes. Figure 6(a) shows the
comparison of the space requirements for one index. As n(F) increases, space
requirements of B+-Tree and the MA index increase rapidly compared with EB index.
Figure 5(b) shows the space of each index structure as the number of indexes to be
created increases. If we create more than 4 indexes, the space of the MA index is



An Efficient OLAP Query Processing Technique Using Measure Attribute Indexes        225

smaller than that of the EB index due to the sharing of the measure attribute values in
MAF as shown in Figures 2 and 3.  

Fig. 6. Index Space Comparisons

4.2   Query Evaluation Cost

Here, we compare query evaluation costs for B+-Tree, EB, and MA indexes. Various
parameters shown in Table 1 are used in the mathematical cost modeling.

For query Q in Section 3.2, equations (1), (2), and (3) are the cost formulas when
we use B+-Tree index I1, EB index I2, and MA index I3, respectively. Aggregation
cost is excluded because it has the same cost regardless of the index types. Here, we
measure the query evaluation cost in the number of disk block IOs.

 Cost1(Q) = p(Di) + n(Di)×s(C)×c(I1)+ b( p(F), bf(F), n(F)×s(C) ) + G(I1,attr-list)            (1)
 Cost2(Q) = p(Di) + n(Di)×s(C)×c(I2)+ b( p(F), bf(F), n(F)×s(C) ) + G(I2,attr-list)             (2)
 Cost3(Q) = p(Di) + n(Di)×s(C)×c(I3)+ b( p(MAF), bf(MAF), n(F)×s(C) ) + G( I3,attr-list) (3)

In the formula, p(Di) is the access cost for the dimension table Di to evaluate the
local conditions. The next item n(Di)×s(C)×c(Ij) is the index access cost for qualified
objects in Di. The third item b( p(F), bf(F), n(F)×s(C) ) represents the access cost for
the fact table F. The last item G(Ij, attr-list) denotes grouping cost by using the index
Ij.

We assume that the query processor evaluates the conditions of each dimension
table at first and obtains OIDs of the qualified objects in the dimension tables. In the



226        T.S. Jung, M.S. Ahn, and W.S. Cho

next, an index is used to find OIDs of the qualified objects in the fact table. In
Equation (1) and (2), the query processor accesses the fact table by using the OIDs of
the fact table returned from the index. However, in Equation (3), the values in the
measure attribute can be obtained from MAF instead of the fact table.

In Equations (1), (2), and (3), the first and the second items have almost the same
cost for all indexes; but, the third and the fourth items have a great difference as the
number of qualified objects in the fact table increases. The parameter b( p(MAF),
bf(MAF), n(F)*s(C) ) is much smaller than b( p(F), bf(F), n(F)×s(C) ) in Equations
(1) and (2) since MAF is small compared with the fact table F. Furthermore, group by
operator can be processed by the index-only fashion in the MA index. Therefore, G(I3,
attr-list) in Equation (3) is much smaller than those of Equations (1) and (2).

                  (a) Selection Query                      (b) Selection and Grouping Query

Fig. 7. Comparison of query evaluation costs for various indexes

Figure 7 shows the costs of Equations (1), (2), and (3) in a graphical form. Figure
7(a) compares the costs of queries where group by operators are not included; but
Figure 7(b) shows the costs of queries having group by operators. In Figure 7(a), there
is a little difference between B+-Tree and EB indexes in the query evaluation cost. In
Figure 7(b), the difference between B+-Tree and EB is not significant due to the
dominant grouping cost. This is because the conventional query processor does not
utilize B+-Tree or EB indexes in the evaluation of the grouping operators. Note that
the MA index provides a superior performance regardless of the query selectivity.
There are two reasons for this superiority; (1) the third item in Equation (3) is very
small since it accesses the smaller MAF file instead of the huge fact table F. (2) the
fourth item in Equation (3) is also very small due to the index-only processing of the
grouping operators.

4.3   Experimental Results

For performance comparison, we create a data warehouse for Figure 3 containing
1,000,000 objects and 5,000,000 objects in the fact table F(Sales). Two queries Q1
and Q2 are used : Q1(F JOIN D1) and Q2(F JOIN D1 JOIN D2 with Grouping). B+-
Tree and MA indexes are compared. Remind that B+-Tree and EB indexes have
almost the same cost as shown in Figure 7, especially for the queries having grouping



An Efficient OLAP Query Processing Technique Using Measure Attribute Indexes        227

operators. Figure 8 shows that the MA index provides a significant performance
advantage compared with B+-Tree. For small query selectivity, there is relatively little
performance difference. However, as the query selectivity increases or if the query
includes group by operators, the MA index has a significant performance advantage.
This performance advantage comes from the index-only processing for the expensive
star joins and grouping operators. Since most OLAP queries include grouping
operators with high query selectivity compared with the OLTP queries[16], this
performance advantage is especially valuable.

             (a) Q1(F JOIN D1 JOIN D2)                         (b) Q2(F JOIN D1 JOIN D2 with Grouping)

Fig. 8. Response times of B+-Tree and MA indexes for 1M and 5M

5   Conclusions

We proposed a new index structure, called measure attribute(MA) index, and a query
processing technique to improve the performance of OLAP queries. OLAP queries
are extremely complicated due to representing the intricate business logic of the
company on a huge quantity of data. That is why the performance is an important
issue in the OLAP queries.

The MA index supports an efficient evaluation of the star joins and  groupings that
are frequently used but most expensive operators in the OLAP queries. The MA index
is a variation of the path index in object databases and it supports index-only
processing of the star join and grouping operators. We have implemented the MA
index on top of an object-relational DBMS. The performance analysis shows that the
MA index provides speedups of orders of magnitude for typical OLAP queries.

References

1. Y. Zhao, et al., "Array-based evaluation of multi-dimensional queries in object-relational
database system," In Proc. Int'l Conf. ICDE, 1998.

2. C. Y. Chan and Y. Ioannidis, "Bitmap index design and evaluation," In Proc. ACM
SIGMOD Conference, pp. 355-366, 1998.

-

50

100

150

200

250

300

350

1.6% 4.8% 30.0% 64.0%
Query Selectivity

Sec

MA 1M MA 5M

B+Tree 1M B+Tree 5M

0

500

1000

1500

2000

2500

3000

3500

1.6% 4.8% 30.0% 64.0%
Query Selectivity

Sec

MA 1M MA 5M

B+Tree 1M B+Tree 5M



228        T.S. Jung, M.S. Ahn, and W.S. Cho

3. G. Colliat, "OLAP, relational and multidimensional database system," In Proc. ACM
SIGMOD Record, 25(3), 1996.

4. B. D. Czejdo, et al., "Design of a data warehouse over object-oriented and dynamically
evolving data sources," DEXA Workshop, pp. 128-132, 2001.

5. R. Elmasri and S. B. Navathe, Fundamentals of database Systems, Addison-wesley, 2000.
6. V. Gopalkrishnan, et al., "Star/snow-flake schema driven object-relational data warehouse -

design and query processing strategies," DaWaK, pp. 11-22, 1999.
7. J. Gu, et al., "OLAP++: Powerful and easy-to-use federations of OLAP and object

databases," In Proc. Int’l Conf. on VLDB, pp. 599-602, 2000.
8. T. Johnson, "Performance measurements of compressed bitmap indices," In Proc. Int'l

Conf. on VLDB, pp. 278-289, 1999.
9. M, Jurgens and H. J. Lenz, "Tree based indexes vs. bitmap indexes : a performance study,"

In Proc, Int'l Workshop on DMDW, 1999.
10. L. Do, et al., "Issues in developing very large data warehouse," In Proc. Int'l. Conf. on

VLDB, pp.633-640, 1998.
11. C. Mohan, et al., “Single Table Access Using Multiple Indexes: Optimization, Execution,

and Concurrency Control Techniques,” In Proc. EDBT, pp. 29-43, 1990. 3
12. P. O'neil and G. Graefe, "Multi-table joins through bitmapped join indics," In Proc. ACM

SIGMOD Record, 24(3), pp. 8-11, Sept, 1995.
13. P. O'neil and D. Quass, "Improved query performance with variant indexes," In Proc. ACM

SIGMOD, pp. 38-49, 1997.
14. F. Ravat and O. Teste, "A temporal object-oriented data warehouse model," In Proc. DEXA

Workshop, pp. 583-592, 2000.
15. Stanford Technology Group, "Designing the data warehouse on relational database," White

Paper.
16. TPC-D, http://www.tpc.org, 2002
17. P. Valduriez, "Join indices," ACM Trans. on Database Systems, 12(2), pp.218-246, 1987.
18. K. L. Wu and P. S. Yu, Range-based bitmap indexing for high cardinality attributes with

skew, Research Report, IBM Waston Research Center, May, 1996.
19. M. C. Wu and A. P. Buchmann, "Encoded bitmap indexing for data warehouses," In Proc.

Int'l Conf. ICDE, 1998.
20. S. B. Yao., "Approximating block accesses in database organizations," Comm. of the

ACM, 20(4), pp. 260-261, 1977. 


	1   Introduction
	2   Related Work
	2.1   Star Schema and OLAP Query
	2.2   Conventional Index Structures for OLAP Query Processing

	3   The MA Index and Query Processing Technique
	3.1   Index Structure
	3.2   Query Processing Algorithm

	4   Performance Analysis
	4.1   Space Comparison
	4.2   Query Evaluation Cost
	4.3   Experimental Results

	5   Conclusions
	References

